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Nowadays many autopilot manufacturers are available in the commercial market for
fixed wing small/mini Unmanned Aircraft System. Several autopilot configurations exist
with a wide variety of selected sensors, sizes, control algorithms, and operational capabilities.
However, selecting the right autopilot to be integrated in a given Unmanned Aircraft System
is a complex task because none of them are mutually compatible. Moving from one autopilot
to another may imply redesigning from scratch all the remaining avionics in the Unmanned
Aircraft System. This paper presents the Virtual Autopilot System to facilitate exploitation of
data obtained from the autopilot to be used by other applications on board. At the same time,
it provides a hardware-independent interface that isolates payload and mission components
from the autopilot specificities, thus eliminating dependencies on a particular autopilot
solution. This subsystem is integrated into an Unmanned Aircraft System mission-oriented
architecture called Unmanned Aircraft System Service Abstraction Layer, which promotes
the development of automated concepts of operation keeping the Unmanned Aircraft System
pilot fully under control. The VAS and its surrounding architecture have been implemented
for a variety of autopilots, ranging from the commercial AP04 from UAV NAVIGATION, to
the Paparazzi autopilot and even autopilots for ground-based vehicles. In all cases the selected
Virtual Autopilot System interface was maintained, overall capabilities increased due to the
flight-plan and mission-oriented perspective offered by the surrounding architecture, and
development times exponentially reduced as the Virtual Autopilot System design is consoli-
dated. This wealth of experimentation demonstrates that employing a standardized interface
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facilitates the integration of new Auto Pilots, but at the same time capabilities are not only
maintained but dramatically increased by developing flight-management systems on top of
the Virtual Autopilot System standard interface.

I. Introduction

CURRENTLY, Unmanned Aircraft Systems (UASs) are mostly being used for military applications such as
in [1], but with the evolution of avionics technology, a huge market in civil applications is now emerging [2–5].

However, there is a lack of hardware and software support to effectively develop these potentialities in the civil
domain. No commercial solution exists today that provides support for all these applications.

Economic efficiency requires the same UAS to be able to operate in different application domains. Therefore,
one of the current challenges in UAS research is to define a hardware/software UAS framework that is sufficiently
flexible and reusable to be operated in a wide range of civil applications. To be competitive in the civil market, this
framework must provide fast prototyping and be affordable.

In previous work, a flexible, reusable, and distributed hardware/software UAS architecture was introduced in
order to support the development of different UAS civil missions [6,7]. This architecture works as an abstraction
layer, called UAS Service Abstraction Layer (USAL), that allows the easy and fast design of missions and enables
the usability of the system in a cost-effective way.

During the development of the USAL some relevant questions arose. Can dependencies on a particular autopilot
solution be eliminated? Is it possible to provide a hardware-independent interface that isolates mission and payload
components from the autopilot specificities? From the study of several commercial UAS autopilots, we have identified
three clear drawbacks that limit the effective integration with the mission and payload control inside the UAS:

1) Some sort of standardization and adaptation is needed, focused on the UAS mission instead of the
UAS flight.

2) Exploitation of autopilot telemetry by other applications in the UAS is complex and depends on the
autopilot.

3) The flight plan definition available is just a collection of waypoints that are statically defined or
handmanipulated by the UAS operator.

This paper presents a key component of the USAL architecture called the Virtual Autopilot System (VAS). The
VAS is a component designed to facilitate exploitation of data obtained from the autopilot, offering flight-related data
flows to other systems on board the UAS. The VAS provides a hardware-independent interface that isolates mission
components from the autopilot specificities. On one side the VAS interacts with the selected autopilot and therefore
needs to be adapted to its peculiarities. On the other side, it interacts with most USAL components and therefore
needs to offer a well-defined standardized interface and capabilities. The VAS operates similarly as drivers work on
operating systems (OSs), removing the implementation details from actual autopilot users.

The VAS also benefits from a great effort to properly define common autopilot states and from a well-defined
concept of operation designed to increase the level of automation and simplify the pilot interaction. At the same
time, the VAS retains simple navigation capabilities for traditional operations. The VAS and USAL go beyond the
development of specific navigation and/or mission solutions like the ones introduced in [1,8–13], by proposing a
common framework on top of which particular applications can be further developed. Embedded safety modes are
also proposed to facilitate the integration of the UAS in the airspace. Finally, the Human Machine Interface (HMI)
aspects are considered to be of the utmost relevance, and therefore the VAS is designed to have a powerful ground
control interface.

The paper is organized as follows. Section II describes existing UAS autopilots and highlights their disparity in
capabilities and interfaces, thus motivating the development of this work. Section III outlines the USAL architecture
and the communication middleware that supports its distributed paradigm. In Sec. IV, an overview of the VAS is
provided and its architecture introduced. In Sec. V, VAS operational mode design and its interface with the rest of the
USAL services are described. Some implementation details are provided in Sec. VI. Section VII details simulation-
based experimental results and field tests on real prototypes. Finally, our conclusions and planned future work are
presented in Sec. VIII.
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II. Previous Work
The heart of a UAS is the autopilot. Without it, the UAS cannot fly autonomously. The autopilot implements the

control layer and applies control laws on the different UAS actuators to direct its flight. It is essential to understand
how autopilots work, what kind of inputs they support, and what are their capabilities in order to design a suitable
UAS open architecture on top of them. There is a considerable amount of autopilots designed for UASs such as
Piccolo autopilot [14], AP04 autopilot [15], MicroPilot UAV autopilot [16], Paparazzi autopilot [17], ArduPilot [18],
and Aalborg University autopilot [19] or [20,21], and the list is constantly growing. It is not the purpose of this
section to provide an exhaustive survey of UAS autopilots. The following paragraphs describe a few of the available
autopilots and provides a short description of their technical characteristics in order to identify their drawbacks and
limitations.

The most relevant studied autopilots have been Piccolo from Cloud Cap Technology, AP04 from UAV-
NAVIGATION, and Paparazzi from the ENAC. Piccolo and AP04 are examples of commercially available products,
whereas Paparazzi is a research autopilot. Piccolo and AP04 support autonomous operations such as launch, nav-
igation, or land, but no generalized concept of operation to perform those maneuvers. All of them also provide a
mechanism for storage of telemetry data in real time. Piccolo provides big binary streams of telemetry data, which
are hard to process by other applications on board. Both AP04 and Paparazzi organize telemetry in data packets sent
at different rates, which are also too big to be easily exploited. All three autopilots offer input and output capabilities
in order to interact with the payload. However, the payload components do not have any mechanism to interact with
the flight plan and coordinate both activities. This approach is very restrictive in terms of flexibility and potential for
automation. Almost every autopilot has all the standard set of sensors (Inertial Measurement Unit (IMU), magne-
tometer, air data system, Global Positioning System (GPS) receiver) and in some cases, for example with AP04, also
featuring dual CPU redundancy. Paparazzi is a combination of infrared thermopile and inertial measurement for atti-
tude sensing, providing a robust and accurate attitude estimate that requires no ground calibration. With regard to the
flight plan capabilities, they only provide a collection of waypoints hand-manipulated by the pilot in command (PiC).

During this study, three drawbacks were clearly identified that limited the autopilot’s effective integration with
the mission and payload control inside the UAS:

1) Depending on the implementation and capabilities of each autopilot, the autopilot’s behaviors or states will
differ. Some sort of standardization and adaptation is needed, focused on the UAS mission instead of the
UAS flight.

2) Exploitation of autopilot telemetry by other applications in the UAS is complex and depends on the autopilot.
Autopilot telemetry is typically designed just to monitor the state and position of the UAS, and is not to be
used by third party applications.

3) The flight plan definition available in most autopilots is just a collection of waypoints that are statically
defined or hand-manipulated by the UAS operator. This approach severely limits the flexibility of the system
because no possible interaction exists between the flight plan, the mission itself and the payload operated by
the UAS.

Further details on this analysis cannot be publicly reproduced due to the limitations imposed by the nondisclosure
agreements with the proprietary companies. It is worth noting that a wide range of academic autopilots are under
development, but most of them are mainly focused on the research of control theory and algorithms rather than on
the UAS operation or the interface with the remainder of systems within the UAS architecture.

III. USAL System Overview
The USAL has been introduced as a flexible, reusable, and distributed hardware/software architecture to support

the development of different UAS civil missions [6,7]. This architecture works as an abstraction layer that simplifies
the design of UAS missions and enables the reusability of the system in a cost-effective way. The existence of an
avionics framework package specifically designed for UASs may alleviate the development effort and cost, reducing
them to a simple configuration or parameterization.

The design of this avionic framework started with the definition of its functional requirements. These requirements
were defined by the type of UAS (basically mini or tactical UAS) and by the mission objectives. From the study
and definition of several UAS missions, we identified the most common functionalities that are present among them.
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Elements such as autopilots, cameras, mission control engines, payload controllers, contingency managers (CMs),
and data storage are needed in almost all UAS missions. Therefore, it is a natural approach to provide a framework
for defining and standardizing all these components, capturing common requirements and functionalities.

The goal of USAL is to reduce development effort when creating a new UAS system, providing standardization
but also flexibility to the development of all systems required to implement the UAS mission. The USAL is the
set of available services, running on top of a middleware called Middleware Architecture for Remote Embedded
Applications (MAREA) [22], that provide support to most types of UAS missions. The USAL also defines service
interrelations as the basic starting point for further development by users. Functionalities like enhanced flight plans,
a mission control engine, data storage, autopilot management, and contingency management are offered.

The USAL can be compared to an OS. Computers have hardware devices used for input/output operations. Every
device has its own particularities and the OS offers an abstraction layer to access such devices in a uniform way.
Basically, it publishes an Application Program Interface, which provides end-users with efficient and secure access
to all hardware elements.

The USAL considers sensors and in general all payload as hardware devices of a computer. It is a software
abstraction layer that gives facilities to end-users’ programs to access the UAS payload. It also provides many other
useful features designed to simplify the complexity of developing the UAS application. It defines a collection of basic
services that comprises a minimum common set of elements that are needed in any UAS. A number of additional
services have been identified as “highly useful” in most UAS application. The USAL intends to provide a framework
in which the UAS developer can easily exploit these services, but at the same time provide guiding directives on how
new ad hoc services should be created.

A. USAL Service Categories
The USAL is composed of a set of distributed services running on top of a middleware that have been organized

and divided into several categories. Services are grouped into the same category when they cooperate toward the
same objective, such as flight, mission, payload, or awareness. However, not all of them have to be present in every
UAS or in every mission. Only those services required for a given configuration/mission should be present and/or
activated in the UAS.

Available services have been classified into four categories (see Figs. 1 and 2):
1) Flight Services: Services responsible for basic UAS flight operations: autopilot, flight plan management,

basic monitoring, contingency management, etc.

Fig. 1 Overview of the USAL flight and awareness category interaction.
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Fig. 2 Overview of the mission and payload category interaction.

2) Mission Services: Services responsible for carrying out the actual UAS mission.
3) Payload Services: Specialized services interfacing with the input/output capabilities provided by the payload

on board the UAS.
4) Awareness Services: Services responsible for the safe operation of the UAS with regard to its integration

with other airspace users or terrain avoidance.

B. USAL Flight Category
The flight category is responsible for basic UAS flight actions. Each one of the services in this category has a

specific goal related to UAS airworthiness. Flight services target the following objectives:
1) To abstract autopilot details and peculiarities to the rest of the system.
2) To extract internal sensor information from the autopilot and offer it to other services for its exploitation

during the UAS mission.
3) To provide a common flight plan definition, significantly improving current commercial autopilot capabilities.
4) To provide status monitoring capabilities and automatic contingency management for an efficient emergency

response (including the monitoring of the electrical and engine subsystems).
Figure 1 depicts the fundamental components in the flight services category as well as the major relationships

among them.
The main services in this category are the VAS and the Flight Plan Manager (FPMa). These components interact

with the ground segment through the Flight Monitor (FM) and the Flight Plan Monitor (FPMo) services. Any
electrical or mechanical contingency is managed by the CM service. This service can interact with the UAS directly
using the VAS or through the FPMa.

The VAS is a service that interacts with the selected autopilot and therefore needs to be adapted to its peculiarities.
The VAS is a service provider that offers a number of information flows to be exploited by the USAL.

The flight planning capabilities of all autopilots are dissimilar, but they are generally limited to simple waypoint
navigation. From the point of view of the current missions, using a simple waypoint-based flight plan may be
extremely restrictive. Alongside the VAS, we have developed an FPMa designed to extend current autopilot flight
plan capabilities [23]. The FPMa offers an almost unlimited number of waypoints, waypoint grouping, structured
flight plan phases with built-in emergency alternatives, mission-oriented legs (that specify the path that the aircraft
must follow in order to reach a destination waypoint) with high-level semantics like repetitions, parameterized scans,
etc. Flight plans are specified using an Area Navigation (RNAV) inspired [24] XML formalism.

Area Navigation is an Instrument Flight Rules navigation method that allows to fly routes that can be defined
between arbitrary waypoints within the coverage of a network of navigation beacons or within the limits of a
self-contained positioning system, or a combination of both.
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The Engine and Fuel Manager System and the Electrical Manager are in charge of monitoring the engine and
electrical parameters of the UAS in order to detect and notify potential contingencies. Besides monitoring functions,
both services can also estimate the time remaining to carry out the mission under nominal conditions.

Employing the USAL permits addressing the safety issues related to UAS operation from a high-level perspective.
The combination of a dedicated service with preplanned contingency reactions embedded both within the flight plan
and the VAS provides a powerful safety mechanism. The CM is responsible for collecting status information related
to multiple sources, such as engine, electrical, fuel, etc., identifying that some type of contingency has evolved, and
deciding which type of reaction is required. The reaction will be more drastic depending on the type of contingency
[25]: in some situations the CM will reconfigure parts of the USAL to continue the UAS mission under degraded
conditions; whereas in others the FPM and VAS will be commanded to execute some emergency operation, e.g.,
an immediate return to base, or selecting a predefined alternative landing site or executing an emergency flight
termination procedure.

Note, however, that the autopilot and VAS need to retain a certain level of contingency capabilities. At each step
of the flight, a preplanned basic reaction maneuver will be sent from the FPM to VAS and from there to the Auto
Pilot (AP) itself. In case the USAL communication infrastructure fails, VAS will interpret this as a lost-link situation
and react following the preplanned termination procedures (in that case the reaction scheme will be much simpler
than that available through the overall USAL). If VAS itself fails, the AP will identify the lost link and execute the
preplanned termination. Optionally, the AP may use a dedicated link with ground control to override the overall VAS
interface. This mechanism is not hard to implement and provides yet another safety net, although specific for each
AP.

A certain level of control and monitoring is required from the ground segment so that the PiC is able to supervise
the UAS operation at all times. However, different operator profiles should exist depending on the functionalities
that require monitoring. In the USAL framework, we have identified three different operator profiles: pilot, flight
plan controller, and mission controller. The flight service category includes support for both direct flight control
through the FM service, and flight plan modification through the FPMo service. In addition, special attention is paid
to contingency situations during the mission. Therefore, additional monitoring is available for both types of operation
(manual and flight plan based) in order to manage in-flight contingencies through the Contingency Monitor. This
service may be embedded into the FM.

The pilot interface aspects of the USAL are also developed, but will not be described in detail as they are out of
the scope of this paper. Figure 3 shows a portion of the FM HMI. This pilot-oriented interface will offer traditional
information about telemetry, real-time video, basic flight plan tracking, and the system state. However, the FM also
includes diverse interchangeable components that can be accessed through an auxiliary screen (see Fig. 4). Among
others, the available components include: basic flight plan information, VAS state management, alarms, support for
taxi operations, support for takeoff and landing operations [26], payload configuration, etc.

The FPMo is in charge of real-time monitoring of the entire UAS flight plan. Unmanned Aircraft System Service
Abstraction Layer flight plans are defined as structured collections of both basic and sophisticated legs (including
alternatives, repetitions, and other parameterized legs) [23]. The FPMo allows to monitor and control the progress
of the flight plan, performing dynamic updates on the fly by modifying those parameters rather than updating
individual waypoints. This dynamic flight plan formalism allows to describe highly complex behavior by exploiting
the aforementioned legs and the update mechanism. However, the formalism also allows to embed emergency flight
plan alternatives and takeoff/landing parameters to dynamically choose between airfields. The appropriate design of
these HMI interfaces is ongoing research that will be described in future work.

C. Middleware Architecture for Remote Embedded Applications
The MAREA is a middleware system used to communicate different services over a Local Area Network (LAN).

The MAREA provides an execution environment with communication channels and common functionalities. The
role of each service is expressed by the action of publishing, subscribing, or both simultaneously; in this way,
the publish/subscribe model eliminates complex network programming for distributed applications and makes it
easy to implement an embedded service. The MAREA offers the localization of the other services and manages
their discovery within the network; it handles all the transfer chores, message addressing and retransmission, data
delivery, flow control, etc.
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Fig. 3 Flight Monitor Service: main screen.

Fig. 4 Flight Monitor Service: auxiliary interfaces provided through a secondary Multi-Function Display (MFD).

The MAREA promotes the Service Oriented Architecture (SOA) publish/subscribe model for sending and
receiving data. The MAREA is responsible for delivering the information to all subscribers that declare an interest in
a certain flow of data. Information exchange is carried out through four communication primitives, which are called
variables, events, remote invocations, and file transmissions:

1) Variables may be sent at regular intervals or each time a substantial change in their value occurs. The system
should be able to tolerate the loss of one or more of these data transmissions. Example of variables are flight,
engine, or electrical telemetry.
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2) Like Variables, events also follow the publication/subscription paradigm. The main difference, when
compared with variables, is that events guarantee that all subscribers will receive the sent information.
Events are used to inform all interested services of occasional and important facts. Some examples are error
alarms and indications of arrival at specific points of the mission, etc.

3) Remote Invocation is an intuitive way of performing one-to-one modeling of interactions between services.
Some examples are the activation and deactivation of actuators, or requesting some form of calculation to a
service. Therefore, in addition to variables and events, the services can expose a set of functions that other
services can invoke or call remotely.

4) The File Transmission primitive is basically used to transfer large sets of file-structured information from
one node to another when there is a need for the safe transfer of XML configuration files, payload data, and
mission-oriented data processed on board the UAS.

Service Oriented Architecture is becoming common in domains that can benefit from loose coupling among
interacting services. This architecture provides an increase in the interoperability, flexibility, and extensibility of
the designed system and of its individual services. Following this vision, we implement services that represent the
different components and functionalities that make up the complete USAL architecture.

Middlewares permit the design of a complex service architecture by abstracting the designer from all inter-service
communication details. However, this ease of development is confronted to a decrease of performance that may
limit certain real-time operations. For this reason USAL employs two timing zones: one within USAL and another
one between VAS and the autopilot. Within USAL the main driving event is the waypoint. Events are triggered
because vehicles reach certain positions in space, for example, to activate/deactivate payload, or to decide which is
the upcoming leg the UAS needs to fly. However, if the UAS flight needs to be continuously monitored, this operation
needs to be implemented within the AP–VAS timing zone given the fact that their direct link (external to the SOA
network) at most times will support hard real-time requirements.

IV. Virtual Autopilot System
The VAS belongs to the set of services defined in the USAL flight category. The VAS is specially designed to

operate as an interface between the autopilot and the USAL. It is a system that at one end interacts with the selected
autopilot and therefore needs to be adapted to its peculiarities. At the other end, it interacts with the other USAL
services. The VAS operates similarly as drivers work on OSs, removing the implementation details from actual
autopilot users. The VAS is a service that provides a standardized interface to the particular autopilot on board the
UAS. For other services in the USAL, the VAS is a service provider that offers a number of information flows to be
exploited by them. Given that not all autopilots are equal, the VAS follows a contract between it as a service provider
and its potential clients. This means that all the information provided by this service is standardized independently
of the actual autopilot being used.

The inclusion of the VAS greatly improves the flexibility of the USAL framework because of the following
reasons:

1) the autopilot unit can be replaced by a new version or a different product, but this change will have no impact
on the system except for the VAS; that is, it implements an abstraction layer in order to isolate the system of
autopilot hardware changes;

2) an increased level of functionality is provided, permitting the operation with a virtually infinite number of
waypoints, thus overcoming a limitation present in all UAS autopilots that have been studied;

3) commercial autopilots mainly focus on waypoint navigation, whereas UAS operation may require considering
a global perspective, from takeoff, to the mission, and back to landing. The VAS promotes standardized
mission-oriented states in order to cope with more elaborated operational requirements.

With these intention statements, the VAS fits perfectly within the USAL philosophy. Any specific autopilot
interface, change or version update will not affect the UAS development effort. Also, the VAS greatly simplifies the
integration of the autopilot within the USAL. In that way, USAL services will always interact with the same autopilot
interface.

However, the VAS is not a replacement for the real autopilot. The VAS will simply provide either abstraction
mechanisms to facilitate the way in which actual autopilot capabilities can be exploited; or increase the standardization
of the AP interface (like providing a common waypoint definition and then translating it into the particular format
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Fig. 5 Overview of the overall VAS architecture.

each autopilot uses). Highly specific autopilot functionalities may require additional nonuniform interfaces to be
added, like special drivers permit accessing noncommon hardware in OSs. Future work will address this issue, for
example, including a generic mechanism to activate user-defined autopilot modes and parameters.

The VAS is specially suited to work in conjunction with the FPMa and the FM. The FPMa is the USAL service
responsible for processing and executing the proposed flight plan, but it does not operate in a stand-alone fashion.
To execute the flight plan, the FPMa sends navigation commands to the VAS. These commands mainly consist of
waypoints that the aircraft has to fly. Since the flight plan is specified in terms of legs, a certain translation process is
needed to convert them into the waypoint sequences expected by the VAS. This flow of waypoint commands is the
main form of interaction between the FPMa and the VAS.

The FPMa also issues other commands, for example, a cancelation command would be used for asking the VAS
to ignore a number of waypoints and directly jump to a given leg, or when an emergency forces an alternative plan
to be executed. Another type of command allows the FPMa to change the VAS operation mode to request special
operations such as takeoff or landing.

The FM is the on-ground service that interacts with the VAS and keeps track of the mission (see Figs. 3 and 4).
The FM provides the possibility for the PiC to configure and interact with the VAS. It shows a major schema of VAS
states and their transitions. By means of this view, the PiC can change the VAS state. The FM is responsible for
displaying all VAS generated telemetry to the PiC.

V. VAS Design
Virtual Autopilot System architecture has been divided into four main areas: Flight State Management, Navigation

Information, Flight Telemetry, and Status/Alarm Information, as seen in Fig. 5.
The objective of the Flight State Management is to provide a uniform and well-structured model of operation,

regardless of the underlying autopilot operational capabilities. Navigation Information will define the flows of infor-
mation required to determine the path that the aircraft follows according to the selected operational mode. The Flight
Telemetry area relates to the need to standardize a common set of attitude and position data extracted from the autopi-
lot; that is, VAS enables the exploitation of the autopilot telemetry by other applications within the USAL. Finally,
the Status/Alarm information gives information about the airworthiness of the autopilot and VAS. As shown in Fig. 5,
Flight Telemetry and Status/Alarm information are outgoing information flows, whereas Navigation and State Man-
agement have an input/output flow. All these information streams will be described in detail in the following sections.

A. VAS Flight State Management
Most existing autopilots just focus on primitive navigation operations. In contrast, we have developed a set of

mission oriented VAS states that focus on the overall operational sequence that a UAS should follow. The actual
functionalities of the underlying autopilot are not determinant because the VAS will implement the missing high-level
capabilities employing existing functionalities available within the autopilot (basically waypoint navigation and/or
heading-based navigation). In this way, we ensure that the other services in the USAL always exploit a stable set of
autopilot capabilities.
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Fig. 6 Virtual Autopilot System state diagram. Arrows indicate allowed transitions.

The VAS organizes the operational states in groups of desired functions that include: the UAS startup and checks
prior to flight, taxiing, takeoff, classical navigation, landing, and taxiing after landing. Also included are reaction
states that allow conflict avoidance functions to take over standard operations; and safety states that provide a
minimum set of autonomous contingency reactions. Each high-level function is then refined into specific states that
implement the exact concept of operation. Within each state, the UAS develops specific tasks in order to achieve the
operational requirements. Figure 6 illustrates the complete VAS state diagram and the allowed transitions between
states. The initial state inside each group is shown with an arrow on the top right corner. When a given group of
states is entered, only states marked as initial ones can be reached. The other arrows show the permitted transitions
between states. The diagram begins with the UAS startup states at the top and, from there, the rest of the states that
cover the overall operational sequence can be found in descending order. The FM employs a dedicated HMI (see
Fig. 4) to help the PiC manage VAS operational workflow.

1. StartUp States
The group of startup states is related to the system initialization. It is composed of three states: Stop, Configure and

Check, and Parking. Operations start at the Stop state. Only when the VAS and overall USAL services are properly
configured, the UAS can change to the Parking state. In this state, the engine is switched on; then, sensors, servo
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mechanisms, and communication modules will be checked again with the engine working. After the check list, the
UAS can go on to taxi states. Next, we describe the states which make up the Startup group more in detail.

Stop State: On Startup, the VAS starts by default in the Stop state. In the Stop state, the overall USAL startsups
and all commanded servos are disabled to avoid accidents.

Configure and Check: In this state, the VAS gets configured and executes several built-in self-test. The VAS
configuration is described by XML files that contain the autopilot properties, the aircraft properties, and VAS settings
for implementing the mission. All these operations are carried out with the UAS on the ground still inside a hangar
or parking area.

Parking and Check: Once up and running, the VAS sets up all the connections with the underlying autopilot. Then,
it starts to publish all the autopilot streams to the other USAL services; e.g., the telemetry flow is activated and UAS
positioning is validated. During the Parking state, a preflight checklist is carried out with the UAS engine eventually
working. This task is commanded from the FM where the PiC is controlling the UAS.

2. Taxi States
Now the UAS can proceed to the designated runway in order to start the flight. The VAS can support this operation

in two different ways: Auto Taxi and Manual Taxi. With the Auto Taxi, a specialized auxiliary service will generate
ground navigation commands to reach the runway. In Manual Taxi, the PiC uses the FM to drive to the correct runway
holding point by the correct taxiway (see Fig. 4 for an outline of the dedicated HMI). It is the pilot’s responsibility
to do this in accordance with the taxi procedures and the runway in use. The VAS will set up certain built-in limits
according to the actual ground speed and steering of the UAS. Switching from auto to manual is allowed at any time,
whereas the converse is only allowed if the UAS is properly aligned within the taxi route.

Current autopilots (see Sec. II) do not provide an auto taxi capability. In these cases, the VAS foresees a comple-
mentary service that will have to implement the taxi algorithm for guiding the UAS to the desired runway. On the
other hand, if anything goes wrong, the VAS can give the control to the PiC to change to Manual Taxi. Then, when
the UAS has reached the runway holding point, it can transition to the takeoff states.

Table 1 illustrates some Taxi state parameters required to support the Taxi operation safely. “MaxTaxiSpeed”
defines the maximum speed over the taxiway, whereas “UsageTaxiThrottle” limits the maximum throttle usage in
order to avoid sudden accelerations. Limitations are employed to limit other aspects like: the turn radius, speed while
turning, etc.

Taxiing is a complex operation, especially in automatic navigation. In noncontrolled airports, it is the responsibility
of the PiC to ensure a safe Taxi. However, in controlled airports, this operation may be commanded to some extent
by the Tower Controller. Usually, the number of taxiways in an airport are considerable. Therefore, in order to select
the correct taxiway, the FM provides special HMI interfaces [27] designed to help the PiC in order to achieve this
goal (see Fig. 4).

3. Takeoff States
As in the Taxi, the takeoff states can also be carried out manually (Manual takeoff) or automatically (Auto takeoff).

If the takeoff is carried out automatically and any eventual contingency occurs, the PiC can switch over to Manual
takeoff to take charge of the situation. In case of performing a manual takeoff, the VAS will remain in this state until
it can change to the Navigation states. Normally, this transition between states has to be done at a safe altitude. The
selection of the Takeoff Abort state means that for some reason the UAS cannot change to Navigation states. In this
case, the UAS joins an aerodrome traffic pattern and then it switches to Land states. In this way, the VAS assures a
safe landing of the UAS if a problem has been detected during the takeoff procedure.

The Takeoff control parameters are shown in Table 2. “TakeoffSecureAltitude” indicates the minimum safe altitude
where the initial takeoff climb finishes and the VAS commands a turn into the end of departure waypoint (EDWP). By

Table 1 General parameters to the taxi states

Taxi parameters name Unit Description

MaxTaxiSpeed m/s Maximum taxi speed
UsageTaxiThrottle Percentage Percentage of throttle usage
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Table 2 General parameters to the takeoff states

Takeoff parameters name Unit Description

TakeoffSecureAltitude Meters Altitude where finishing the takeoff state
TakeoffVerticalSpeed m/s Rate of descent or climb along the takeoff state
TakeoffSpeed m/s Speed over the runway before climb
TakeoffDecisionPoint Wp object Runway threshold to abort the takeoff

default, this altitude is 150 m, however, some airfields may vary altitude to impose other limits due to geographical
constraints. “TakeoffVerticalSpeed” sets up the instantaneous climb rate. “TakeoffSpeed” is the threshold speed
before rotation should be performed. “TakeoffDecisionPoint” describes the runway threshold decision point where
the takeoff can be aborted. This point is implemented in order to be able to automatically abort a takeoff in the event
of the expected acceleration and speed parameters not being reached.

Manual Takeoff: Assuming that the UAS is in the proper runway holding point, the VAS accepts commands from
the PiC in order to implement the Manual Takeoff operation. Full throttle control is offered to the PiC, although
limited steering control is available in order to avoid an improper operation. As soon as a safe speed and altitude are
reached, the VAS transits into Navigation states. Speeds and altitudes can be parameterized as desired depending on
the details of the UAS (see Table 2).

Auto Takeoff: If the autopilot is capable of performing an automatic takeoff, the VAS lets the autopilot execute this
initial part of the procedure. If this is not the case, the VAS implements the execution of this state using the available
autopilot control primitives; that is, the VAS can either command the autopilot to perform a built-in takeoff operation
or implement the automatic takeoff extending the autopilot capabilities [26,28].

Two scenarios exists when performing a UAS takeoff operation. There is the case when the runway in use has
a Standard Instrumental Departure (SID) published, and the UAS has been cleared to execute it. In this situation,
the takeoff procedure will consist of just the takeoff roll and an initial climb out to transition immediately to the
Navigation states and perform the published SID externally commanded by the FPMa.

In case there are no SIDs published, the VAS, together with the FPMa and FM, proposes a specific VFR-like
procedure consisting on an initial climb and a transition to an EDWP. This EDWP is the link between this departure
procedure and the beginning of the mission flight plan. Therefore, at the EDWP the UAS starts the Navigation states
commanded by the PiC or by the FPMa. Figure 7 shows a generic example of a runway with five associated EDWPs
which are automatically generated, but can always be edited or deleted by the PiC during the preflight activities.

Depending on the initial waypoint of the flight plan, a unique EDWP will be selected from the five EDWPs
associated with five different areas (A, B, B′, C, C′) that may contain this initial waypoint.

Fig. 7 Virtual Autopilot System definition of EDWPs.
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Table 3 General parameters to the navigation states

Navigation parameter name Unit Description

NavigationMaxAltitude Meters Maximum navigation altitude
NavigationMinAltitude Meters Minimum navigation altitude
NavigationMaxSpeed m/s Maximum navigation speed
NavigationMinSpeed m/s Minimum navigation speed

4. Navigation States
When the UAS has reached an EDWP, it changes automatically to Navigation states that are composed by Waypoint

Navigation, Directed, Hold-At, and Manual Control states. In Waypoint Navigation, the UAS follows the waypoints
that are provided to the VAS. In the Directed state, it will simply maintain a specific altitude, airspeed, and heading.
In the Hold-At state, it executes a holding pattern around an indicated waypoint. Finally, in the Manual Control state,
the PiC has a supervised control over the vehicle to maintain a certain safety envelop.

Table 3 shows the parameters which can be managed during the Navigation states. These parameters define the
speed and altitude limits to all Navigation states. They are not static parameters during the entire mission, they can
be configured from one leg to another one depending on the mission and safety requirements.

Waypoint Navigation: The VAS offers two different mechanisms for operation in the Waypoint Navigation state:
static and streamed Waypoint Navigation.

Static Waypoint Navigation is commanded by the PiC through the FM (as seen in Fig. 4). In this case, the VAS
sequentially flies the waypoints stored in the static waypoint vector where they have been previously uploaded.

In streaming Waypoint Navigation, the VAS reads a continuous stream of waypoints generally generated by the
FPMa. The waypoints are stored in an internal queue to be sequentially processed in the same order that they are
inserted. Once a waypoint is flown, it is discarded. It is competence of the FPMa to generate and validate each
required waypoint, and their sequence, according to the characteristics of the selected flight plan.

Directed: The VAS keeps the UAS under stabilized flight, allowing a restricted number of parameters to be
modified: heading, speed, and altitude. For safety reasons, there is a timeout for staying in the Directed state with
the same heading. If the specified time is exceeded, the VAS will switch to the Safe Hold state.

Hold At: The VAS maintains the UAS under a stabilized holding pattern characterized by a number of parameters
that can be trimmed to achieve the desired holding structure (see Fig. 8). This state is defined by an Inbound track,
a Holding Fix, a turning direction, and two time parameters: t1 and t2. Essentially, the UAS flies along the Inbound
Track until the Holding Fix is reached, and then flies a right/left turn rectangular pattern defined by three additional
waypoints. Again, speed and altitude can also be modified as usual through the Input Navigation parameters.

Table 4 depicts the HoldAt state parameters. “NewT1HoldTime” and “NewT2HoldTime” define the duration of the
holding pattern.With “NewSetHoldFix”, we define the waypoint over which the UAS starts its first turn.We also define
“NewSetHoldDirection” in order to choose the turn direction of the holding pattern. Finally, “NewSetHoldAtFix”
sets up the holding point around which the UAS will turn. Therefore, we have two ways of specifying the holding

Fig. 8 Hold at pattern state.
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Table 4 Active input navigation packets during hold at state

Input hold at parameters Units Description

NewT1HoldTime Seconds Duration of the horizontal track
NewT2HoldTime Seconds Duration of the vertical track
NewSetHoldFix N/A Set up current fix for holding operation
NewSetHoldSide N/A Set up current side for holding operation
NewSetHoldAtFix N/A Set up the center waypoint of the holding operation

pattern: one is by managing the center of the hold and the other is by controlling the waypoint over which the UAS
starts the procedure.

Manual Control: The UAS can be operated manually by means of a joystick connected to the FM. The PiC has
direct control over the UAS, but under similar restrictions as in the Navigation states; i.e., max/min altitude, max/min
speed, max/min attack angle, etc. These parameters help the pilot avoid any critical or radical procedures. If the pilot
wants to operate without any restrictions, it has to change to the Manual state in which the UAS is outside Navigation
state boundaries.

5. Landing States
Along with the Takeoff states, the Landing states address one of the most important issues that will arise if

extensive civil UAS application become a reality in the near future, in a scenario where manned aircraft will coexist
with unmanned vehicles. Like in the Auto Takeoff state, we may have Standard Terminal Arrival Routes and/or
Instrumental Approach Procedures published for the runway in use. In this case, this approach phase is assumed in
the Navigation states.

In the case of not having an instrumental approach available, the VAS proposes a specific VFR-like procedure
detailed in [26]. Briefly, the UAS will overfly the airfield at a height greater than the highest of the aerodrome traffic
patterns. A hold will take place at a point over the aerodrome’s vertical. At this point, the aircraft will be able to
wait at a safe altitude before joining the aerodrome traffic pattern. Once in the holding, the PiC will select the traffic
pattern or the Air Traffic Controller (ATC) will command the integration in one defined direction. Then, a holding
Exit Waypoint is defined along with an Integration Waypoint and the Initial downwind Waypoint. Then, the UAS will
fly the upwind and crosswind legs and integrate the downwind leg at the height of the circuit. After this integration,
the UAS will follow the standard traffic pattern with a downwind, base, and final legs. Once in the final leg, the
VAS will transition to Auto Land or Manual Land states (see Fig. 9). If any problem occurs during the operation, the
selection of the Land Abort state will make the UAS climb up to a safe altitude and reinsert it in the approach pattern

Fig. 9 Overview of land pattern state.
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Table 5 Active input navigation packets during approach state

Input land pattern packets Units Description

CrossWindTime Seconds Set up the crossWind time in the Approach
DownWindTime Seconds Set up the downWind time in the Approach
InVerticalHoldAltitude Meters Set up current altitude for holding operation in the runway
InVerticalHoldSpeed m/s Set up current speed for holding operation in the runway
InVerticalHoldAt Wp object Set up wp. of the center for holding operation in the runway
TrafficSpeed m/s Set up the speed of the traffic circuit operation
TrafficAltitude Meters Set up the altitude of the traffic circuit operation
ApproachMode N/A Describes the land pattern mode

(through the Approach state). Once the UAS slows down on the runway, the VAS will switch to the Taxi state again
to finish the operation.

Approach: The VAS employs a number of parameters that permit to define the details of the circuit performed
around the airfield. These parameters specify the fly times required to define the initial holding pattern (initial altitude,
speed, duration, and center point for the maneuver). The actual circuit is defined by CrossWind and DownWind
parameters, as well as all the details on the glide slopes and the runway itself. Additionally, traffic speed and altitude
designed for the characteristics of each individual UAS are required.

Table 5 shows the parameters of the Approach state. Combining the “CrossWindTime”, “DownWindTime”, and
the specific runway information, the VAS establishes the different times associated to each traffic leg. Along with
this information, we need the desired traffic speed and altitude, defined in “TrafficSpeed” and “TrafficAltitude”. The
parameters that describe the holding pattern vertical to the runway are: “InVerticalHoldAltitude”, “InVerticalHold-
Speed”, and “InVerticalHoldAt”. The first two parameters fix the holding altitude and the speed. The last parameter
defines the coordinates of the center of the holding racetrack.

Auto Land: As in the Takeoff state, the VAS can also provide this procedure on top of the commercial autopilot
being used. If the autopilot does not support this feature, the VAS can implement it. To develop a safety procedure,
autopilot behavior at low speed and low altitude has to be sufficiently correct. Some autopilots lose efficiency in
this situation, and hence autopilot precision has to be accurate enough to allow implementation of a proper landing
maneuver.

Manual Land: In the Manual Land state, the VAS grants the UAS control to the PiC through the FM. The
pilot is expected to generally follow the same landing procedure specified for the automatic landing process. The
VAS continuously monitors the operation to guarantee that the UAS is kept under a minimum landing envelope.
If outside this envelope, the VAS immediately reverts to the Land Abort state. This functionality can be overridden
if a nonconventional landing is mandatory.

Land Abort: When the UAS is in the Auto Land state, the VAS computes the difference between the Desired
Touch-Down Fix and the real one. If the deviation obtained is greater than a predefined threshold, the missing
approach procedure should start by passing to the Abort Land state. In future versions of the VAS, it is clear that the
same abort procedure should be used with respect to any lateral deviation, speed variations out of a valid range, or
rates of descent out of valid margins. In the event of an aborted landing, the UAS should fly until rejoining the traffic
pattern of the runway.

6. Safe States
If any failure occurs during the Navigation states (basically the VAS loses contact with the FM due to a data link

failure or an internal architecture failure), the VAS switches to the Safe states. These states are composed of the Safe
Hold, Safe Return, and Safe Land states. When a failure is detected, the VAS changes to the Safe Hold. The UAS
will remain in this state while recovering from failure. After a timeout, the UAS will switch to the Safe Return state.
In this state, the UAS will return to the predefined emergency runway in order to start the Safe Land state employing
similar parameters to those used for an standard landing operation.

Note that the USAL architecture itself contains a contingency module that may trigger an emergency landing
procedure in which more elaborated strategies are defined [25]. For example, the USAL can internally update the
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Table 6 Active input navigation packets during the safe hold state

Input safe hold packets Units Description

newSafeHoldTime Seconds Time to stay in hold state
newHorizontalSafeHoldTime Seconds Duration of the horizontal track
newVerticalSafeHoldTime Seconds Duration of the vertical track

exact emergency landing site to be used at each phase of the flight plan evolution. However, in case the USAL fails,
the VAS provides similar capabilities but employing simplified decision strategies.

Safe Hold: This state has been designed to offer a waiting pattern to recover from minor contingencies without
fully aborting the operation. These contingencies can become a real problem if they persist for a long time. The VAS
will remain in this state for a predefined amount of time, so that either the Pic or the UAS itself has the opportunity
to fix the problem before aborting the mission.

The parameters in Table 6 describe the holding pattern and the timeout to stay in this state before it changes to
the Safe Return state.

Safe Return and Safe Land:After a timeout in the Safe Hold state, theVAS will switch to the Safe Return state. This
means that there has been no successful response to the contingency. Therefore, the VAS follows the safe protocol
to recover the UAS. In this case, the UAS returns home in the Directed mode to land as soon as possible. When the
UAS is arriving at the airport, it overrides the Safe Land mode. In this case, the VAS skips the Land Pattern and
commands the UAS to land in the selected runway.

7. Safe Reaction
There are several conflict avoidance situations that need an immediate reaction from the UAS. As in manned

aircraft, avoidance can be divided into: conflict avoidance when enough lead time exists to prevent the conflict with
minor flight plan modifications; or collision avoidance when an immediate radical maneuver is necessary to avoid a
mid-air collision. Although conflict avoidance is coupled to the FPMa, the VAS retains a specific state to respond to
these immediate requests. Switching into safe reaction means stopping the current VAS operation to react as soon as
possible with a catalog of preselected maneuvers. This reaction will be commanded by an external service (within
the awareness services in USAL) that may request a sequence of operations to guarantee that the collision is avoided.

In Safe Reaction state, theVAS accepts several parameters to configure the reaction to conflicts. Parameters include
the heading to avoid the obstacle, the ascend/descend angle and the reaction priority. By dynamically changing the
ascend/descend angle, TCAS-like reverse maneuvers can be implemented.

Through the priority parameter the VAS knows how radical the maneuvers have to be. The operation is managed
through the “NewSafeReactionHeading” and “NewSafeReactionPriority” parameters, although other parameters to
perform vertical maneuvers may be implemented (Table 7).

B. VAS Navigation Information
In the USAL framework, the FPMa is in charge of generating and managing the navigation commands sent to

the VAS (see details about FPMa in [23]). The VAS navigation information is composed of two sets of information:
Output Navigation and Input Navigation information. The aim of Output Navigation is to publish the UAS navigation
status to the rest of the services. Input Navigation provides the autopilot with navigation primitives that determine
the flight path.

Table 7 Active input navigation packets during the safe reaction state

Input safe reaction packets Units Description

NewSafeReactionHeading Radians Set up current heading to evade an obstacle
NewSafeReactionPriority Integer Set up current operation priority
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Table 8 Output navigation information by the VAS

Protocol primitive Name Composition Unit Description

Event, function currentWp Lat., lon., alt. Rad., meters Waypoint information
Identifier N/A where the UAS goes

Function previousWp Lat., lon., alt. Rad., meters Previous waypoint info
Identifier N/A

Function rwySituation Lat., lon., alt. Rad., meters Runway info
Heading Radians from the
Length Meters autopilot

Function altRwySituation Lat., lon., alt. Rad., meters VAS alternative
Heading Radians Runway information
Length Meters

Function uavDirection TAS m/s Current target TAS,
Altitude Meters altitude,
Bearing Radians Bearing and heading
Heading Radians

Function, Event vasState State N/A Current VAS state

1. Output Navigation Information
This information basically defines where the UAS is going at any moment, in which direction it is moving, and

which waypoint it is flying (see Table 8).
Almost all output VAS navigation primitives have a semantic of remote invocation. This means that when a

service in the network needs any of these data, it can request them remotely. However, messages such as current
waypoint “currentWp” and VAS state “vasState” are also published as an event. These data are essential to know the
current position and phase of the mission. Services such as FPMa or FM need to know this information at regular
time intervals. Given that this information is important to the UAS flight, we must guarantee the reception of the
information sent to all the subscribed services; therefore, we use MAREA middleware events. The “previousWp”
message indicates the last flown waypoint. “rwySituation” and “altRwySituation” indicate the position of the selected
runway for nominal operations and alternative operations (such as fuel or battery contingencies), respectively. Finally,
“uavDirection” indicates the current track that the UAS is flying. The true airspeed, altitude, and heading are also
included in this message.

2. Input Navigation Information
The next group of information is the Input Navigation information. This basically defines VAS configuration

parameters and commands for the autopilot operation, as well as several parameters that define the UAS navigation
according to the selected VAS state (see Table 9).

To set the target airspeed, the altitude, and heading during the mission, the VAS provides “newUavSpeed”,
“newUavAltitude”, and “newHeading” messages, respectively. This information only takes effect once in the navi-
gation state. Through the “newMainRwy” and “newAltRwy” messages, the VAS offers the possibility of changing
the coordinates of the main and the alternative runways. With the “changeVasState” message, services such as the
FPMa, FM, or awareness services can switch the desired VAS state. This message is composed of VAS state type
and the state parameters. With the first field, we specify the new VAS state transition. With the second one, we define
the parameters of each state. Finally, the VAS provides three messages in order to manage the mission waypoints:
“clearWps”, “skipWp”, and “discardWps”. The first message is used to clear all the flight plan waypoints. The second
one is needed to skip a single waypoint instead of the entire flight plan; and with the last message the VAS can discard
a range of flight plan waypoints.

With the “maxTimeMission” message, the VAS sets up the operation time limit. If this limit is surpassed, an alarm
will be raised. The servos’ deflection may be directly managed with the “deflecSurfCont” message. This information
sets the data that will act directly on the aileron, elevator, rudder, and throttle servos. To feed the autopilot with the
mission waypoints, the “newWp” message is used.
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Table 9 Input navigation information by VAS

Protocol
primitive Name Composition Unit Description

Event qnhGround Pressure Pascals Sets the QNH pressure for the altimeter
Event gndLevel Ground level alt. Meters Set the ground level alt. to the autopilot
Event maxTimeMission Time ms Set mission time
Event deflecSurfCont Aileron, rudder, elevator,

throttle
Radians Direct surface control packet

Event newWp Lat., lon., alt. Rad., meters Read waypoint information
Speed m/s Where the UAS goes
Fly over N/A
Identifier N/A

Event newUavSpeed IAS m/s Set indicated air speed
Event newUavAltitude Altitude Meters Set UAS altitude
Event newBearing Direction Radians Set UAS bearing

newMainRwy Lat., lon., alt. Rad., meters Set the coordinates
Function or Altitude Meters of the main

newAltRwy Heading Radians and alt. Runway
Length Meters

Event changeVasState State type and param. N/A Set the VAS state
Event clearWps Event N/A Clear flight plan waypoints
Event skipWp Waypoint identifier N/A Skip one waypoint to another
Event discardWps Waypoints identifier N/A Discard range of waypoints of

Range flight plan

C. VAS Flight Telemetry
There are several ways to display the information generated by the sensors of the autopilot. Usually, autopilot

manufacturers group all this information in large streams of data, which are sent via a radio modem at a certain
frequency. The VAS offers this information over a LAN on board the UAS to the rest of the services. The information
is semantically grouped in such a way that this information relates to parameters, situations, or attitudes of the aircraft,
independently of the real autopilot hardware and sensors (see Table 10).

The instantaneous angular position, acceleration vector, speed vector, and rate of turn of the UAS are indicated
by the “uavAngles”, “uavAcceleration”, “uavSpeed”, and “uavRateTurn” messages, respectively. The instantaneous
coordinates of the UAS is provided by the “uavPosition” message. The IndicatedAirspeed (IAS) and the TrueAirpeed
(TAS) are offered though the “uavAirSpeed” message. In addition, the estimated wind direction around the UAS and
the mission time in seconds from VAS startup is published with the “windEstimated” and “missionTime”.

Table 10 Flight management information published by the VAS

Protocol
primitives Name Composition Unit Description

Variable uavAngles Roll, pitch, yaw Radians Roll, pitch and yaw angles
Variable uavAcceleration X,Y,Z m/s2 Acceleration in UAS X,Y, Z axis
Variable uavRateTurn X,Y,Y rad/s Rate of turn in UAS X, Y, Z axis
Variable uavPosition Lat., lon., alt. Radians and meters 3D UAS position
Variable uavSpeed North, east, down m/s 3D speed in the UAS
Variable uavAirSpeed IAS and TAS m/s Air speed data in UAS
Variable windEstimated North, east, down m/s 3D wind speed estimated
Variable missionTime Time ms Mission duration
Variable uavSurfaceControl Alieron, rudder, flaps, elevator Radians Surface control positions
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Table 11 Status and alarm information

Protocol primitive Name Description

Event gpsApAlarm GPS alarm
Event outRangeTempApAlarm Temperature outside range
Event accApAlarm Acceleration alarm
Event rateTurnApAlarm Rate of turn alarm
Event ImuApAlarm IMU alarm
Event magnetometerApAlarm Magnetometer alarm
Event pressureAltimeterApAlarm Pressure altimeter alarm
Event anemometerApAlarm Anemometer alarm
Event missionAlarm Mission time alarm
Event wpRangeAlarm Waypoint range alarm
Event wpProcessAlarm Error processing parameters
Event lackMainRwy No main runway
Event speedAlarm Speed range

In general, UAS autopilots provide a great deal of information from all the sensors; however, only a small portion
is of real use when implementing a system oriented toward mission development. The Flight Monitoring Information
has been chosen taking into consideration which information could be useful in mission-related terms.

D. VAS Status/Alarm Information
An autopilot is a complex piece of hardware that needs constant monitoring. With Status/Alarm information, the

VAS publishes the autopilot and VAS status. When any part of these devices fails, the VAS sends an alarm to the
network (see Table 11).

There are certain defined alarms that control the links between the GPS receiver and the satellites (GPS Autopilot
Alarm). The VAS also provides detailed alarms for notifying problems in the different sensors within the autopilot
(Accelerometer, Gyroscope, Magnetometer, Anemometer, and Pressure altimeter). However, operation of the UAS
can usually continue in a degraded mode. In this case, the UAS will usually try to return to base for maintenance.
Some alarms manage the specific operation of VAS service. The Waypoint Range alarm will be raised when the
FPMa (or the service in charge of providing the waypoint list to the autopilot) tries to feed a waypoint that is not
coherent with the rest of the flight plan (too far away from the previous waypoint). This usually indicates a problem
with the FPMa or the flight plan itself.

Another specific situation that is notified by the VAS is when a main runway has not been uploaded. Finally, in the
event of an internal error the VAS will raise the Process Error alarm, indicating that it has detected some abnormal
behavior in its internal calculations.

VI. VAS Implementation
In this section, the proposed design for implementing the VAS is outlined. The VAS uses a two-level design:

one that interacts with the USAL [called the Virtual Autopilot Layer (VAL)], and another that interacts with the
autopilot [called the Autopilot Layer (APL)]. Both pieces of software are defined as “layers” (see Fig. 10). The VAL
is in charge of interacting with the USAL. It defines the VAS API in order to provide the same abstracted autopilot
interaction for the remaining USAL services. This layer never changes, irrespective of which autopilot the VAS is
working with.

The APL is responsible for dealing with each particular autopilot. Here is where all the specific functionalities,
language, formats, and behavior of the autopilot are dealt with. This layer has to accomplish certain requirements
defined by the VAL. If the autopilot is changed, the only code that must be partially replaced is in the APL.

The VAL–APL abstraction is implemented through the use of the “IAutopilot” interface. The interface works as
a contract carried out by the two layers and defines the compulsory methods that every autopilot class must have
in order to be used by the VAS. When the autopilot is changed, it should have an associated autopilot class that
fulfills all the requirements made by the interface. This is why interfaces work as contracts: every autopilot class
must accomplish the obligations required by the VAS, through the interface, in order to work with them.
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Fig. 10 Virtual Autopilot System interface composition.

To test VAS development, we have implemented the IAutopilot interface for three autopilots: Paparazzi,AP04, and
a rover autopilot (see Fig. 10). To carry out these autopilot changes, we only have to develop a class that implements
the complete set of methods required by the IAutopilot interface.

A. Autopilot Layer
This layer is responsible for adapting VAS to the peculiarities of each autopilot. It is composed of classes designed

in a generic way to reduce the reconfiguration time which is one of the objectives of the USAL. Figure 11 shows the
overall APL architecture.

The main class of the APL is the “autopilot” that implements the “IAutopilot” interface. This class acts as a
wrapper that invokes other specific classes that manage aspects like the communications links with the autopilot and
the VAL, or classes that manage the information flows for each type of data employed within the VAS. At the other
end, the APL connection class manages all the specific characteristics of the direct connection between the autopilot
and the VAS (physical transport, format of the messaging protocol, etc.).

The APL implements a global area class designed to share variables from different parts of the layer. This class
works as a repository box where all flight information is stored. The most relevant components of this shared class
are the following:

1) Navigation Information: The navigation information part formats and forwards the navigation USAL
messages received by the VAS in its own specific language.

2) States Information: In the states information part, the APL receives a USAL state command. This command
expects a concrete behavior. If the autopilot has no similar state, the APL layer has to implement it.

3) Alarm Information: The APL has to be aware of the alarms the VAS sends to the system. Therefore, if an
alarm is not given by the autopilot, for example, that a waypoint is not valid, this part has to create this
information and send it.

4) Telemetry Information: Most of the telemetry given by autopilots is similar. The duty of the APL here is to
format and split the information given by the autopilot to the USAL telemetry packets defined in Tables 8
and 10.

As may be seen in Fig. 11, the navigation and states parts are an up-link stream. The information given by the
VAL reaches the APL, and it has to be formatted, or created, in order to be sent to the autopilot, while the telemetry
and alarm works the other way around. The information is taken from the autopilot and the APL should transform it
into a suitable form for sharing it with the rest of the system.
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Fig. 11 Composition of APL.

Waypoint management is one of the most complex implementation issues. The APL implements a waypoint array
class that creates a replica from a real autopilot waypoint array. When adding, erasing, or performing any kind of
manipulation in the queue, this needs to be done locally. Once a waypoint is added or erased from the replicated
buffer, this buffer sends the information to the autopilot in its own specific language.

B. Virtual APL
The VAL layer is composed of several classes described in Fig. 12. The VAL interfaces on one side with the APL

layer and on the other side with the whole USAL architecture through a middleware. The IAutopilot interface for the
APL is defined in the VAL, however, its implementation is always developed in the APL. As mentioned previously,
the VAL will never change and the interface definition is the same for all the autopilots, although its implementation
may differ.

To correctly operate as a USAL service, the VAS has to honor the IService interface declared in the MAREA
middleware. This task is divided into two separate modules seen at the bottom of Fig. 12. The Virtual Autopilot
Service is in charge of providing the overall interface compatibility when handling incoming events, functions, and
parameterization files. All this message flow is redirected to the specific component within the VAL.

On the other side, theVirtual Autopilot Publisher collects all outgoing communication requests from inside theVAL
and publishes them through the middleware. Additionally, this publisher is in charge of gathering and publishing all
telemetry follows that are offered at constant rates, thus reducing the computational load of the remaining components.
Like in theAPL, the VAL employs a Global Area class to collect and centralize all relevant information. The publisher
can take all the fixed rate outgoing data from this information pool without disturbing other components.

In addition to the aforementioned interfaces, the VAL is structured into four main components: State Management,
Telemetry Management, Navigation Management, and Configuration Management.

217



ROYO ET AL.

Fig. 12 Composition of VAL.

To parameterize some important aspects related to VAS configuration, a number of XML Configuration files
are used. The information stored in these documents may vary depending on the mission, airframe, or autopilot. To
maintain reconfigurability when the system is at the Configure and Check state, the VAS will consult these parameters
and load them on internal data structures.

The Telemetry and Alarms manages the collection of the incoming autopilot telemetry and stores information
related to the autopilot and overall system status. It also reports on any alarm or any anomaly detected in the system.

Within the USAL, different services are in charge of sending navigation commands to the VAS: the FPMa for
complex flight plan management or FM for direct PiC management, and the Awareness services in case an avoidance
reaction is necessary. In all cases, these commands take the form of new waypoints or direction changes. All these
commands are collectively processed by the Navigation component, which is responsible for managing the internal
waypoints queues that are later going to be sent to the actual autopilot.

Finally, the State Management component is responsible for implementing the operation state diagram, processing
the events and conditions that produce transitions between states, and preventing forbidden transitions.

Figure 13 presents a detailed extension of the Navigation Management component located in Fig. 12. It shows all
the internal blocks that implement the waypoint flow in the VAL. As can be seen at the bottom of the figure, there are
different services that can generate waypoints and send them to the VAS: FM, FPMa, and the Awareness services.
Waypoints can also be internally generated at certain states of the VAS itself to implement specific functionalities
(like VAS land pattern). The VAL contains different data structures that store waypoint information: in particular, the
FPMa Waypoint Queue, the FM Waypoint Array, the Awareness Waypoint Queue, and one array for each VAS state
that needs to generate its own internal waypoints. In the figure, the Hold Waypoint Array is displayed as an example.

When a waypoint is received by the VAS, the Waypoint Administrator is in charge of analyzing the waypoint
identifier and saving it in the correct queue or array. At the top of Fig. 13, the VAS waypoint array, which constantly
maintains three waypoint positions, is depicted. This array is used to ensure that an exact synchronization exists
between the autopilot internal waypoints and the mapped VAS waypoints.
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Fig. 13 Virtual Autopilot Layer navigation class.

VII. Experimental Results
The VAS has been implemented for three different autopilots under simulated environments: the commercial

AP04 autopilot for both airplanes and helicopters from UAV-NAVIGATION, the open-source Paparazzi autopilot
from ENAC for small UAS, and an autopilot for unmanned ground vehicles called Reflection Autopilot from NASA
Ames Research Center [29,30] (see Fig. 14). These adaptations have been developed following and implementing
the “IAutopilot” interface as described in the previous section.

Developing the VAS for the AP04 autopilot took about 28 weeks. In a first step, a whole AP04 interface was
designed employing the open-source flightgear simulator as the underlying dynamic model. This allowed to test
almost all critical functionalities before moving on to test the VAS on the real AP04 hardware. This period of time
was divided in three different parts: The APL development, VAL development, and the integration of both layers.
We spent 10 weeks in the APL development, 14 weeks in the VAL development, and 4 weeks with the integration of
the layers. This case was our first VAS implementation and thus motivated an extra development and testing effort.
It should also be noted that the AP04 provides more functionalities and complexity to take into account than the rest
of tested autopilots.

The VAS adaptation for the Paparazzi autopilot took about 13 weeks: 8 weeks with the APL development, 3
weeks with the VAL development and 2 weeks with the layers’ integration. The Paparazzi system includes its own
simulation environment. Note that in this case practically all the VAL and the integration development was reused.
This is why the VAL and the integration development effort have been reduced. On the other side, the APL code was
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Fig. 14 FM, VAS, FPMo interacting with different autopilot simulators.

replaced in order to integrate the new autopilot to the USAL architecture. Additionally, the Paparazzi autopilot offers
less complexity than the AP04 and therefore the learning curve is reduced.

In the UGV Reflection Rover autopilot case, we have taken about six weeks to carry out the autopilot integration into
the USAL architecture. Again, the VAL was reusable from the AP04 and the Paparazzi versions but at the same time
the lessons learned through the Paparazzi change allowed us to further reduce the VAL development and integration
time. Most development effort was dedicated to implement the new APL for the Reflection autopilot, although small
changes were required to adapt the PiC interfaces to a USAL version in which “altitude” was meaningless. In this
last case and after full simulation and testing phases, VAS and USAL architecture were shortly tested on the real
rover at the NASA Ames research center.

Working with different autopilots, we have been able to demonstrate how the VAS has overcome the clearly
identified drawbacks of current UAS autopilot technology. In addition, we have been able to validate that the autopilot
unit can be replaced by a different product and this change has almost no impact on the entire USAL except for the
VAS. Thus, we have achieved and informally quantified development time reductions.

The concept of the combination of VAS + USAL has been employed to implement a helicopter-based UAS called
Sky-Eye (see Fig. 15). This system is designed to improve the overall awareness of the fire managers by providing
tactical support to wildfire monitoring and control of ground squads [31]. The Sky-Eye prototype is built around the
AP04 autopilot and existing commercial off-the-shelf technology that can be immediately deployed on the field at a
reasonable cost. Sky-Eye is designed to increase the level of UAS automation while being controlled from a mission
point of view by a PiC. Information is gathered by the on board cameras, processed, and then relayed in such a way
that it can be immediately exploited by the fire-fighter squads.

The Sky-Eye development has been greatly simplified thanks to the VAS. Initial prototypes were implemented
by using the simulated version of the AP04. An almost immediate migration was possible to the real AP04, while
a fixed wing aircraft version is currently under development using another commercial AP unit. The corresponding
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Fig. 15 Sky-Eye UAS prototype based on the AP04 autopilot and the combination of VAS and USAL architecture.

interfaces will be implemented, and thanks to the VAS concept the overall mission-oriented architecture will be
migrated from a tactical to a strategic monitoring platform with little effort.

VIII. Conclusion
This paper has presented the main aspects of the development of the VAS within the USAL architecture. We

have shown that the VAS helps overcome some clearly identified drawbacks of current UAS autopilot technology.
Based on the study of the state of the art in UAS autopilots, we identified that autopilots are highly oriented to flight
capabilities and they do not take the overall UAS operation into account. The VAS proposes to use a well-defined
range of states that are more focused on the full operation flow rather than just on the flight. Some states such as
Takeoff and Landing make a clear step forward toward the integration of the UAS in a nonsegregated airspace from
an operational point of view.

The VAS is designed following a Hardware Abstraction Layer concept; thus, the autopilot unit can be replaced
by a new version or a different product, but this change will not have an unacceptable impact on the rest of UAS
systems. In this way, we reduce the development effort when the autopilot is changed or updated by a newer version
or the mission systems are deployed into a new UAS platform that uses a different autopilot unit. Telemetry is not
autopilot dependent. The VAS offers the autopilot telemetry semantically grouped in order to be used by third party
applications on board. The advantages identified during VAS development clearly highlight the urgent necessity for
designing standards like the STANAG4586 [32], but well suited for civil use.

Finally, the VAS operates within the overall USAL architecture, surrounded by cooperating services that allow to
implement much richer mission-oriented capabilities than those offered by current autopilots. The FPMa collaborates
with theVAS to offer an almost unlimited number of waypoints, waypoint grouping, structured flight plan phases with
mission-oriented legs with high-level semantics like repetitions, parameterized scans, etc; a contingency management
strategy with built-in emergency alternatives; and a flexible concept of operation for airfield operations.

Future work needs to fully address the development of the safety aspects of VAS specification and implementation.
Even though the VAS and the USAL add interesting features in terms of a well-structured contingency reaction
strategy, they also add another layer of hardware and software that may fail. Tests beyond simulation of failure
situations are necessary to fully evaluate the validity of the concept. The development of the conflict reaction
capabilities with the VAS is also ongoing research. The VAS will support predefined sets of collision avoidance
maneuvers that should be triggered by sense and avoid systems on board the UAS or commanded by the PiC.
Finally, the exploitation of all these capabilities should enhance the level of automation of the overall UAS operation,
providing powerful and usable HMTs to the PiC. The development of these interfaces is currently an ongoing effort
out of the scope of this paper.
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The applicability of the VAS concept has been tested working with three different autopilots (AP04, Piccolo, and
Reflection). In all three cases, the development was successful and both simulation and small trials were performed.
The full VAS + USAL architecture has been completed for its application in an helicopter-based platform, called
Sky-Eye, devoted to monitor wildfires in tactical scenarios. The safe operation of this vehicle and the enormous
amount of effort in developing the computational systems for this particular application is justified because we can
guarantee that at any moment we will be able to migrate to another platform/autopilot retaining the development
effort thanks to the VAS concept.
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